SMALL GUIDE ABOUT “C“ LANGUAGE

BY BUTTOLO MARCO
INTRODUCTION:
The C language is a compiled language that has taken and still takes on crucial importance especially in the software world and the world of embedded firmware. Having said that language is a compiled language, C is a language where the source (a file with extension. C) is read by the compiler which performs syntax checking, statement by statement, and converts into machine language. Let's see a first example of a program written in C language:
#include <stdio.h>

Main()

{

 Printf(“\n First program!!”);

}

This first and banal program does nothing but print on the screen says 'First Program'. We analyze the important parts. First, each statement written in C is terminated by a semicolon. The latter allows the compiler to identify the end of a logical instruction. The first line of the program is nothing but a preprocessing directive. In essence, the preprocessor is a program that performs the function of preprocessing that replaces the text portions in the code of a program. In this case the substitution is to include another file called STDIO.H that is nothing but a header file is a file containing definitions of constants, variables, structures, function prototypes and of course other preprocessing directives for the correct translation the program. Therefore, the preprocessor copies the entire contents of the file STDIO.H in our source code. The second line of the program is the Main () function, which is the entry point of the program itself that is the main function of the same. Inside the main function is the main code which in this case is made from gunction printf that displays a string on the screen (the one enclosed in double quotes). The special character '\ n' allows me to wrap. The code in each function is enclosed in braces. We see now a second example:
#include <stdio.h>

main()

{

 int var;

 var=3;

 printf(“\n Value of var: %d”, var);

}

This second example is a bit 'more complicated. In essence you declare a variable named “var” of type integer. Assuming the definition of variables, the type is an integer data type to 16 bits which can represent numeric data belonging to the range -32768 <-> 32767. The second line allows you to assign a numerical value to the variable 3. The last statement displays on screen the contents of the variable. Note the special character “%” followed by 'd'. Basically using the “%” character is taken into account the value of
variable specified after the semicolon in printf, and the character 'd' indicates the variable type (d = decimal). The same applies if I declare the character variable (variable 1 byte):
#include <stdio.h>

main()

{

 char var;

 var=’c’;

 printf(“\n Value of var: %c”, var);

}

The character 'c' after the “%” indicates that the variable is a character. To express integer values ​​of high value is possible to use the data type long which occupies 32 bits of memory and is able to represent numbers that range from -2147483648 to 2147483647. In C there is a string data type, and there is no Boolean (true / false). To represent floating point values ​​using the float. Let's see an example:
#include <stdio.h>

main()

{

 float var; /*float variable*/

 var=3.2;

 printf(“\n Value of var: %f”, var);

}

The novelty in this snippet is inserted the comment. In C, comments are written like this:

 / * this is a comment * /
THE POINTERS:

We will speak of memory addresses. First, the memory can be viewed as a sequence of contiguous blocks or memory locations. For each location uniquely assign an address to said memory address precisely, as shown below:

0

1

2

3

4

 MEMORy
Suppose further that each location is equal to 1 byte in size. Then, if the first byte position 0 bytes will be the tenth position 9. Therefore the position of the nth byte will be determined by the distance from the first byte called offset. Unfortunately not always start with the start address 0. Often, to address a RAM is necessary to use a pair of two registers (segment, offset). The segment essentially represents the value of the first start address. Both the offset and the segment is always expressed in hexadecimal. The C language allows you to work with memory addresses using the so-called pointers. The pointers are variables that contain, instead of simple values ​​(numbers rather than characters) contain memory addresses. A pointer in C is declared using the following notation:

int *punt;

doing so I have declared a pointer to an integer variable. This pointer contains the memory address containing the value of the integer variable. For example if I want to know which memory address has a particular integer variable can proceed in two ways as shown below:
#include <stdio.h>

main()

{

 int var; /* float variable*/

 int *punt

 punt = &var;

 printf(“\n Address of var: %d”, punt);

}

Oppure:

#include <stdio.h>

main()

{

 int var; /* integer variable*/

 printf(“\n Address of var: %d”, &var);

}

The novelty of these two code snippets are in the operator &, which is also called the address operator. Instead the operator '*' operator is called referencing. In essence, by using the & I can relate to the memory address for the associated variable. So if I write:

x=&y

I put in the address of the variable x and y. You should be aware that if you write:

printf(“\n Value: %d”, *punt);

actually visualize the memory address of the pointer, which is not the memory address of the variable pointed by the pointer. E 'important to note that the size of a pointer is 16 bits indifferently that the bet variable is a float (therefore occupies 4 bytes). Previously it was stated that in the C data type string does not exist. To circumvent this problem, is possible to do in this way:
#include <stdio.h>

main()

{

 Char *stringa=”test”;

 printf(“\n %s”, stringa);

}

Note carefully the declaration of the string .. It is the declaration of a pointer, and this is not assigned a memory address, but a string constant. The compiler, in fact, assigns to the string, pointer to 16 bits, the address of the constant "test". We will return later on the concept of pointer. We now return to examples rather than simple and direct. We see on the following code fragment:
#include <stdio.h>

main()

{

 int var;

 /*insert value for var*/

 scanf(“%d”, &var);

 printf(“\n %d”, var);

}

The scanf function allows the user to type a numeric value from the command prompt. This value is stored in the variable var.
CONTROL LOGIC:

Let's take another example:

#include <stdio.h>

main()

{

 int var1, var2;

 /*insert value for var*/

 Printf(“\n Insert value for var1:”);

 scanf(“%d”, &var1);

 printf(“\n Insert value for var2:”);

 scanf(“%d”, &var2);

 /* control values var1 and var2 */

 if(var1<var2)

 {

 printf(“\n %d”, var2);

 }

 if(var1>var2)

 {

 printf(“\n %d”, var1);

 }

}

The purpose of the little program is pretty simple. Check which of the two numbers entered by the user is greater, and print to video. The program shows a construct new to us. This is the if construct used to evaluate certain conditions. In general, we have:

if (condition 1 true)

 action

else

 another actions
We extend the functionality of the previous example:
#include <stdio.h>

main()

{

 int var1, var2;

 /*insert value for var*/

 Printf(“\n insert value for var1:”);

 scanf(“%d”, &var1);

 printf(“\n insert value for var2:”);

 scanf(“%d”, &var2);

 /* controls values var1 and var2 */

 if(var1<var2)

 {

 printf(“\n %d”, var2);

 }

 if(var1>var2)

 {

 printf(“\n %d”, var1);

 }

 else

 {

 Printf(“\n var1 and var2 are equalsi!!!!!”);

 }

}

Often happen to have to make textual or graphical menus and having to deal with the choice made by you on these menus. Is there a construct in C that allows us to handle a choice. This construct is the switch-case, as shown below:
#include<stdio.h>

main()

{

 char scelta;

 /*visualizzazione menu*/

 printf(“\n ************* MENU ************”);

 printf(“\n 1. For function A”);

 printf(“\n 2. For function B”);

 printf(“\n 3. For function C”);

 printf(“\n scegli:”);

 scelta=getch();

 /*handle cases*/

 Switch(scelta)

 case ‘1’:

 {

 printf(“\n we are in function A”);

 break;

 }

 case ‘2’:

 {

 printf(“\n we are in function B”);

 break;

 }

 case ‘3’:

 {

 printf(“\n we are in function C”);

 break;

 }

 default:

 {

 printf(“\n choice not correct!!!”);

 exit(0);

 }

}

In essence, in every case (case) makes a single management case studies. Inside each case is that the break statement to exit the switch-case construct. We shall see when we discuss the use of break cycles. If the choice made by the customer is not in any cases, then it goes into default, where the case is handled error. The exit statement is used to exit completely from processing (the function that is being developed) while with the break statement to exit from a particular case but continues processing the other instructions in the function.
We now introduce the loop. First, to understand how to operate the loop we have to see to introduce the concept of arrays. An array is a vector composed of a number of elements. Each element has its own position uniquely identified by a number called the index vector. Graphically we have something like this:

 0 1 2

The vector of sample consists of 3 parts. The first element has index 0, the second element has index 1 and the third element has index 2. So we can safely say that this vector has a length of 3. To perform a scan of the carrier can use a for loop, as shown below:

For(index=0; index<3;index++)

 {

 Printf(“\n element in position: %d has got value: %d”, index, vettore[index]);

 }

In essence, the loop is composed of three conditions. The first condition is that the initial condition or the start and indicates which is the starting index of the carrier. The second condition is a condition of "exit cycle". In few words, with this condition occurs if there are still elements in the array to be scanned, or if we have reached the end of the same. The third condition instead gives us information on what the counter is incremented at each iteration cycle. An array declaration is as follows:

int vett[10];

that is used to declare a vector of integers called "Vett" having a capacity of 10 elements. Similarly, if you write:

char stringa[30]

declare a character array named "string" with a size of 30 characters exactly. In this way can also circumvent the problem related to the fact that C does not exist in the string. Here is an example a little 'fuller use of vectors.
#include<stdio.h>

#include<conio.h>

main()

{

 int vett[20], index;

 /*clear screen*/

 clrscr();

 /*cycle for insert data in vettore*/

 For(index=0; index<19; index++)

 {

 Printf(“\n Insert element: “);

 scanf(“%d”, &vett[index]);

 }

 /*cycle visualization data in vettore*/

 For(index=0; index<19; index++)

 {

 Printf(“\n Value: %d”, vett[index]);

 }

}

Lends itself immediately attention to the possibility to be able to declare on the same line two variables (in this case an integer). The "clrscr" allows you to clean the screen (it has the same effect as a screen cleaner "cls" under DOS). To use this feature was necessary to include the header file "conio.h". Another important cycle is the do-while loop. Let's see a trivial example:
do

{

 index=index+1;

}while(index<100)

In essence, in the cycle shall continue to execute instructions as long as the condition is verified. A similar cycle but with one major difference is the while loop in which the condition is checked first and then if that condition is true, it passes execution of its code contained therein.
While(index<100)

{

 Index=index+1;

}

Please pay attention to the fact that in the first case (do-while loop) even if the condition is not met at least once in the cycle instructions are executed in the while loop if the condition is not true, it executes the of the cycle. This is the great difference between the two cycles.

As in all programming languages​​, including C, there are the so-called logical operators. Let us briefly see how they are represented in the classic C operators of traditional logic. This is not represented by an exclamation point. For example:
If(!(a=b))

{

 Printf(“\n a different from b “);

}

If is necessary to use logic and is necessary to use “&&”. For example:
((a > b) && c)
Returns true if a is greater than b and c simultaneously differs logically true. So the logical links the logical values ​​of the individual conditions (true or false), while and bit by bit, you write with &, acts on individual bits of the expression. For example:
((a > b) & c)
It is true as a condition if a is greater than b and c is equal to 0. The same goes for “or” bit by bit it is denoted by "|". It is used to calculate what is commonly referred to as a logical sum of two values. When two bits are placed in OR, the result is always 1, except the case in which both bits are at 0. The behavior of the logical sum is summarized in the table.
	OR
	0
	1

	0
	0
	1

	1
	1
	1

Instead, the logical or, which is indicated by "| |", performs the task of evaluating the conditions, however, from a logical point of view (in the traditional logic) and then in terms of true and false.

We have already seen how to increase the value of a well-defined variable. For example, if you want a numerical increase of 1 can write:
int x;

x=0;

x=x+1;

The end result of x is obviously 1. And 'possible to perform the same operation using the auto increment operator. This operator is used in this way:
x++;

plays the same role education played x = x +1. Similarly by using the decrease of self can be condensed statement of the form x = x-1 in the following manner:
x--;

In C it is also possible to make some kind of forced conversions. For example, if we have an integer variable named "z" and we want to turn it into a float just write:
y=(float)z;

In this way, "y" will be the transform of "z". Another very powerful tool made ​​available by the compiler is the sizeof operator. This operator returns the size in bytes occupied by a variable in memory. For example, if you want to check the amount of memory occupied by a carrier it would be:
int vett[10];

int dimensione;

/*insert data in vettore*/

dimensione=sizeof(vett);

THE FUNCTIONS:

At this point it is necessary to introduce the concept of function. By function we mean a single processing unit for a program written in C. For example, if we write a complex program, you may think of dividing the same into sub tasks and each task is performed by a function. Graphically we have something like this:
MAIN PROGRAM
 ELABORATIONS
 FUNCTION1()

 FUNCTION2()

 FUNCTION3()

END MAIN PROGRAM
FUNCTION1()

 ELABORATIONS
END FUNCTION1
FUNCTION2 ()

 ELABORATIONS
END FUNCTION2
FUNCTION3 ()

 ELABORATIONS
END FUNCTION3
The main () is a function and is the main function of the program. Clearly, each function, in order to be used, it must somehow be defined. To define a function must write the so-called prototype, which is usually written before the main. Let's see an illustrative example:
#include <stdio.h>

void somma(int, int)

main()

{

 int x1, x2;

 somma(x1, x2);

 }

void somma(int x, int y)

{

 x=x+y;

 printf(“\n SUM: %d”, x);

}

As shown in the example in the prototype, we should put the function name and type of any input parameters and output. An input parameter is a parameter that is passed to the function, while an output parameter is a parameter that is returned to me by my function. In this case I have two input parameters of type integer (the two summands), and as an output parameter I have a void that the function does not return anything to me. The function is then called in the main. When you call a function you pass parameters (called actual parameters), but in this case but not the type names of variables that you want to go. Finally there is the actual function, with its banner and its code. Note that in the function, the input parameters must be specified type and name of the parameter (formal parameters). Warning: the name of the input parameter may also differ from the name in the function call, because the parameter is mapped and therefore the variable x in the function code will call the variable x1. Also note the use of braces. These brackets are optional in the cycles where there is at most one instruction (should be required if there are more statements in the loop), while they become mandatory for functions. Here is an example of a function that returns a value:
#include <stdio.h>

int somma(int, int)

main()

{

 int x1, x2, x;

 x=somma(x1, x2);

 printf(“\n SUM: %d”, x);

 }

int somma(int x, int y)

{

 x=x+y;

 return (x)

}

The only substantive difference, aside from the fact that the return parameter is no longer void, but an integer, is the return statement, which allows me to just returning a value. In C you can pass parameters to a function in two ways:
1. For value
2. For address
When you pass a variable by value, if it is changed within the function and is then returned to the calling function the new value is lost. In fact, when calling a C function passing parameters by value, this parameter is copied into an area of ​​memory called the stack. Therefore, the function will use the copy of the variable stored in the stack and then the original variable will not be touched. In C, the step is always the standard parameters by value. Employing a classic pointer, the stack will store the address of the parameter that is passed by pointer, and so when you change the parameter in the original parameter is changed. The latter mode of parameter passing is the passing of parameters by reference. An example of passing parameters by value has been shown above, when the function is called increase. Here is an example of passing parameters by address:

#include <stdio.h>

int incremento(*int)

main()

{

 int x1, x;

 x=incremento(&x1);

 printf(“\n Result: %d”, x);

 }

int somma(int *x)

{

 *x=*x+1;

}

So, in essence, C parameters to functions are always passed by value, and when calling functions allocate memory for the input variables. In each variable is copied to the value that is passed to the function.

Thus we can trace in outline the structure of a program written in C:
/*comments*/

#istructions forr il preprocessore

Declare costants and variables
Function proptotypes
Return type main(argument list)

{

 Declaration local variable
 Istruction sequence
}

Return type function(argument list)

{

 Declaration local variable

 Istruction sequence

}

THE VARIABLES:
It 'important to emphasize the difference between local variables and global variables. First, a local variable is a variable declared inside a function, and therefore only visible within it. They are often called automatic variables. A global variable is a variable, instead of the main and has declared the first visibility of the entire program (all of the functions of the program). for example:
int var;

void main(void)

{

 var=0;

 var++;

}

Void funz1(void)

{

 var++;

 printf(“\n var:%d”, var);

}
Will print the value 2. Finally we see briefly how to define a constant in C. To define a constant in C just use the keyword define, as shown below:

#define cost 2;

In so doing is defined a constant with value equal to 2. The "define" is always put before the main.
THE FILES:

That said, let's see how does the file handling in C. First of all, it should be made ​​immediately a distinction between text file, ie txt file, containing just the text, or binary files which are files in which the data are stored in the same manner in which they are located in memory. In C, the files are treated as a derived data type, that is obtained from existing elementary types. In practice, when you open and manage a file, you have to do with a pointer to the file, which is a variable that contains some unique reference to the file itself.
To manage the file pointers in C, just write:
#include<stdio.h>

Void main(void)

{

 FILE *fp;

 …….

}

Once the pointer to the file you can work on it. First, one must specify briefly what operations you can perform on a file. We can group these operations in this way:

1. opening files
2. read / write files
3. closing files
We analyze how you can open a file. To open a file you can put the fopen function, whose syntax is as follows:

file pointer=fopen(file name, open mode);

There are several ways to open a file, which we list below:
· r, in read mode;

· w, in write mode;

· a, in append mode (append new record at the end of file).

· r+, read/write mode;

· w+, in read/write mode;

· a+, in append/read mode;

Let's see an illustrative example. Suppose we want to open a file for writing:
If((fp=fopen(“prova.dat”, “w”)==NULL)

{

 Printf(“\Error open file in write mode!!”);

 exit(0);

}

First, it is always best to check the result of opening a file. In our case, opening it in writing even if it creates there. But if we open the file for reading, and there was no such file on disk, then you would run the printf that printed on the screen a nice error message. When a file is opened, it must also be closed. To close a file using the fclose function. This function has only one parameter which is the pointer to the file. So if I write:

fclose(fp);

I close the previously opened file. Once a file is open, you can perform on it the usual operations of reading and / or writing. The access to the contents of the files generally takes place only at the byte level, and not of record. The operations of reading and writing depend on an indicator referring to a position, in bytes, of the contents of that file. Depending on how the file is opened, the indicator is positioned in the most logical. We see the operation of reading a file. To read a file using the fread function, which has the following syntax:

fread(address destination buffer, num_record, record dimension, file pointer);

The destination buffer is essentially a memory area where data read from files are stored. The second parameter indicates how many records to read at a time. The fact file is a set of records. Graphically we have something like this:

We shall soon see to clarify the concept of records. The third parameter is the size of the record and finally the fourth parameter is the pointer to the file. Let us now introduce the concept of record seeing from the point of view of programming. We introduce a new construct that we introduce the C structure. A structure (struct) is a set of variables that refer to an entity. For example, if we consider the entity car, then there may be obviously many variables that may describe a car such as the color of the bodywork, the license plate, the model, and so on. In C you can define a structure using the struct keyword. Let's see an example:
struct persona

{

 char name[30];

 char surname[30];

 int age;

};

We have built a structure called person. In essence, every person has at least a name, a surname, and an age. Now, if we think we have a file called for example persone.dat, and that is basically an archive of all people of a country, then we can associate to each record of a single person, and each record has the structure as tree above defined.
Therefore, if we associate a buffer to the structure (which for convenience we call bpersona), so as to be able to use such a structure, we can rewrite the fread in this way:

fread(&bpersona, 1, sizeof(bpersona), fp);

If you experience any kind of error that prevents the reading, the function simply returns zero, or at least in some versions of C, returns a negative value. When the file is opened for reading, the internal indicator is positioned at the beginning of the file, and each read operation moves forward the pointer, so that the next reading takes place starting from the position below. Let us now see the write operation. This operation is carried out by means of the function fwrite. This function has the following syntax:

fwrite(address destination buffer, num_record, dimension record, file pointer);

Now we see an example:

fwrite(&bpersona, 1, sizeof(bpersona), fp);

This will write a record on file with the structure as a structure person. If you experience any kind of error that prevents the writing, the function simply returns zero, or at least in some versions of C, to return a negative value. Even in writing is important indicator of the internal location of the file. Usually, when you create a file or extends, the indicator is always at the end. At this point you must also specify the particular function EOF (End Of File) that returns a Boolean value, for example, true, if it reaches the end of a file opened for random or sequential.
Now we see an example:

while(!EOF(fp))

{

 Fread(&bffer, 1, sizeof(buffer), fp);

}

There are special functions that allow a developer to move through records in the file. These functions are the function ftell and fseek. Let us first. The ftell function is mainly used to check the current position of the file, ie to see which records are located. This function has one input parameter as the file pointer. For example:
 position=ftell(fp);

The position is absolute, ie referred to the beginning of the file. The return value on success is positive, indicating precisely the position of the indicator. If an error occurs it returns a negative value: -1.
The second function is a bit 'more complex. The fseek function allows you to move through the records of the file. Its syntax is as follows:

fseek(file pointer, record number of movement, from position);

In few words, the first parameter is a pointer to the file, the second parameter indicates how many records I want to move, while the last parameter indicates where the movement begins. In particular, the last parameter can take three possible values​​:
1. SEEK_SET, ossia si parte dall’inizio del file.

2. SEEK_CUR, ossia si parte dalla posizione corrente nel file.

3. SEEK_END, ossia si parte dalla fine del file.

The displacement value, indicated as a second parameter represents a quantity of bytes, and can also be negative, indicating a retreat from the point of departure. The value returned by fseek is zero if the operation is completed successfully, otherwise returns a negative value: -1.

Let us now purely text files. Text files can be managed more easily through two functions: fgets and fputs. These two functions are used to respectively read from file line by line and write line by line on the file. An example of a text file is the CSV (comma separeted value). We see the syntax of fgets:

fgets(&buffer, buffer dimension, file pointer);

Instead, the syntax of the fputs function is as follows:

fputs(&buffer, file pointer);

Let us now describe in a concise and clear the concept of stream and see how it is linked to the concept of a file. First of all we can say that a stream is a kind of software interface between the application program and device to be managed. Graphically there is a thing of the following type:

As the figure shows the stream allows to break away from the physical layer and then allows us to obtain a more logic of the whole. The DOS has 5 streams for each program to read and / or write data to the device. To briefly summarize these streams are:
1. STDIN for keyboard (standard input)

2. STDOUT for screen (standard output)

3. STDERR for screen (standard error)

4. STDAUX for serial port (standard auxiliary)

5. STDPRN for parallel port (standard printer)

Consider the trivial function printf (). This feature allows you to view a video, a generic string. In fact, this statement is incorrect because the printf does not write on the screen but writes to the stream stdout. If we want to redirect a message to stderr just use the fprintf function, as shown below:

fprintf(stderr, “test!!!”);

In doing so the string is placed in the stream stderr. It is usually a good idea to redirect error messages to stderr, so you have a breakdown of these more accurate and tailored to the type of messages.
Previously discussed file and of the usual operations that are performed on a file, such as reading, writing, and so on. Then the file management obviously implies the need for access to the same. The files are stored on disk, and often the speed of access to a disk is much less than the processing speed of a microprocessor, and therefore the need arises to optimize in some way such access. And 'possible to do this by using algorithms of reading and writing redundant delayed.
Let's see what it is. First, for reading redundant means the reading of a byte quantities higher than that actually required. The contents of the reading is stored in a buffer so that for subsequent accesses, does not go over to read the file to disk but is accessed directly to the buffer (stored in working memory (RAM) which is surely faster than the hard disk) in order to extrapolate the required information.

Conversely, the delayed write is to write large amounts of data buffered in memory so that after all the "loot" is loaded only once in the file stored on disk. Note, however, as, in both cases, there rests on a buffer stored on RAM. To bind a buffer of this type called buffer caching to a stream using the setvbuf as shown below:

setvbuf(stream/file pointer, buffer, mode, dimension);

this function is called after opening the file using the fopen function. The field size refers to the size of the buffer, while with regard to the field so we have:
1. _IOFBF, that activate the complete caching of the file
2. _IOLBF, that activate the file caching on row (record)

3. _IONBF, that deactivate the catching file.
This function returns 0 if no error, otherwise returns a value other than 0. However the management of the buffer cache is completely transparent to the programmer. Let's see a concrete example of what I just said:
#include<stdio.h>

main()

{

 char buf[1024];

 FILE *fp;

 if((fp=fopen(“prova.txt”, “w”))==NULL)

 {

 fprintf(stderr, “Error open file !!!”);

 exit(0);

 }

 if(stevbuf(fp, buf,_IOFBF, 1024))

 {

 fclose(fp);

 return (NULL);

 }

 return(fp);

}

WORK WITH REGISTERS:
Other commands very useful especially when working with bit (low level) are the operators of addition and shifting. It 's well known that personal computers store and manipulate data in bits. A group of 8 bits form a byte. Often, during the processing of data, having to make special modifications of the bits of a number. The operation of shift consists precisely in shifting all the bits that make up the number (in format clearly binary) of a number of positions. The shift operation may be right or left.
In shift left (indicated by the symbol <<) move to the left all the bits of the number of 'n' positions. For example:

11100110 << 1

Allows navigation to the left of a position of getting all the bits like this:

11001100

The same holds true for the right shift (indicated by the symbol >>).

11100110 >> 1

The final result is:

01110011
The following piece of code show an example of this type operation:
#include <stdio.h>

main()

{

 unsigned int valore=4; /* 4 = 0000 0100 */

 unsigned int valore_shift=1;

 valore = valore << valore_shift; /* 8 = 0000 1000 */

 printf("%d\n", valore); /* print 8 */

}
Another very common task for people working at low level with each bit is the complement operation. Carry out the 1's complement of a sequence of bits corresponds to simply reverse all the bits of the binary string. For example:

11100010

The complement to 1 is:

00011101

In C is possible to do this operation using ~operator, like this example:
#include <stdio.h>

main()

{

 signed int val=8;

 signed int val2;

 val2 = ~val;

 printf("%d", val2);

}
Earlier, we saw what are the pointers. Briefly summary that a pointer is nothing more than a variable containing inside the memory address of another variable. For example:
int x;

int *punt;

punt = &x;

the pointer will contain the address of the punt named location in memory where is the variable
named x.

Pointers are also used with very useful functions. By passing parameters to a generic function to address and not by value, so by the use of pointers, you can keep track of any changes on the variables within the function itself. See on the following example:
#include <stdio.h>

void scambio(int *x, int *y);
int main()

{

 int num1 = 10;

 int num2 = 20;

 printf("\n Before the changement: num1=%d, num2=%d", num1, num2);

 scambio(&num1, &num2); //call function scambio

 printf("\n After the changement: num1=%d, num2=%d", num1, num2);

}

void scambio(int *x, int *y)

{

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}
The use of pointers can be very problematic for those who are beginners, but soon you realize the great advantage that it involves the use of such tools. The C, unlike other languages ​​like Java, allows you to assign the right amount of memory for program variables. So it does seem necessary to provide a brief description of how memory is structured in general. First, the memory is divided
Into two parts:

• A static part

• A dynamic part
The static part contains all that we know will be allocated (the variables, ...). This part also called stack. The dynamic part does contain all those elements that the program can be loaded or not. This part of memory called heap.
THE LISTS:

Let us now deal with as the argument lists. A list is a data structure particularly used in many applications. The use of pointer lists is critical. This structure is composed of many nodes connected together as shown below:

As the figure shows, a list is composed of many nodes and each node is composed of a data part and a part pointer. The pointer contains the address of a memory location that stores the data portion of the next node in the list. Because the data portion may be more or less complex, will need to create a structure for that part. Suppose, for example, want to describe the situation as an archive of personal data. So Mr. Green will have a name, a surname, address, etc.. We can use as construct the structure (struct), as shown below:
struct persona

{

 char name[50];

 char surname[50];

 char address[50];

 long telephone;

 struct persona *succ;

}

Each list item is contained in a structure, or rather a structure is defined as "structured" for information a list item. An element consists of the information part and the pointer to the next is called a node. The first node of the list is identified by a special pointer called head pointer. When the list is empty this pointer is NULL.
HEAD

So the list is initially empty and the first thing to do is to insert a new node in the list. Then, you instantiate the structure previously created, NUL is placed in the head pointer, and you start with the actual insertion of the node:
 //create node pointer

 struct persona *p;

 //create head pointer
 struct persona *testa;

 testa = NULL;

 //insert first element
 p=(struct persona *) malloc (sizeof(struct persona));

 p->succ=testa;

 testa=p;
In a few words do so via the malloc create the memory area of the size of the structure just defined this to put the first node on the list. Now at the pointer of the node, there will be NULL (for subsequent insertions), while the head will point to the newly inserted node.

HEAD

 null

An element can also be added to the bottom of the list. More to do in this case are:

1. Create a node given space;
2. Assign pointer to the last node in the list the memory address of the newly created node;
3. Assign a NULL pointer to the new node just inserted.

The code snippet is as follows:
//Create pointer to current node
struct persona *corrente;

//scansione lista

while (corrente-> succ!=NULL)

 {

 corrente=corrente->succ;

 }

 p=(struct persona *)malloc(sizeof(struct persona));

 corrente->succ=p;

 p->succ=NULL;
The pointer "current" points to the current node in the list being scanned through the while loop.
From a list you can also delete a node. The thing is quite simple. It is sufficient to make free call the function passing the pointer of the node you want to erase. For example, if you want to delete the first item is simply the following statement:

free(head);

otherwise if you want to delete the final element is sufficient to scan the entire list and then arrived at the bottom to delete this node.

Previously we discussed the function MALLOC. We see now more in detail what does this function, and we see in more detail what role the function plays FREE. When working with lists, we often have to allocate memory areas for future use (to allocate structures, variables, etc.). The C provides functions to allocate memory. In particular, the malloc function allows to allocate a memory area of ​​dimensions specified as a parameter:

malloc(dimension memory block);
The malloc returns a pointer to the newly allocated block of memory. This pointer is usually of type void and therefore operation is required casting, as shown below:
int array[]; /* Declaration */

2 array = (int *)malloc(n * sizeof(int))
The function FREE instead allows to free the memory area allocated before. As a parameter is passed the pointer AER memory you want to delete.

Free(pointer);

Let us also briefly mention the various types of memory. In the architecture of Intel 80x86 processors, the memory is managed in a segmented manner that each address is expressed by two 16-bit registers, a segment register and an offset register. In this way you can direct the executable code, stack, and data. The initialization of these registers is performed by the operating system when an executable is loaded into memory for execution. With regard to the executable files (except for the file. BAT which is essentially a macro) there are two types:
1. File with COM extension

2. File with EXE extension
A COM file is essentially an executable file whose size does not exceed 64 Kb Within this space must reside on either the code, both the stack and data. The EXE file has overcome this limitation. The existing models of memory are:

1. TINY MODEL, which allows the creation of COM files (and EXE). All segment registers (CS = Code Segment, SS = Stack segment, DS = Segment Data, ES = Extra segment) contain the same address, and the code, stack and data should therefore no longer than 64 Kb

2. MODEL SMALL, which allows you to separate code from data. Here again, the generated programs can be up to 64 KB of executable code, but another 64 KB of static data, global, heap and stack.
3. MODEL MEDIUM, allowing you to have great programs that handle small amounts of data. This model manages a segment of 64 Kb for static data, global heap, stack, but a segment of code can handle up to 1 Mb.
4. COMPACT MODEL, which will handle up to 64Kb of code but 1 MB of data.
5. LARGE MODEL, which lets you have 1 MB of code segment, and 1 MB of data.
6. HUGE MODEL, that extends over 1 Mb segment code. The data segment remains unchanged at 1 Mb.
MANAGEMENT PROCESSES AND SIGNALS
A process is a kind of work units, ie it is a kind of program that is launched and performs specific tasks. Each process has its own memory space that is often called the address space in memory. Please pay attention to the distinction between program and process: a process can run a program but a program can generate many jobs. To perform various tasks you need to create a competitive process so that each process works independently. To create a new process, using the following function:

PID=FORK()

This function creates a new process (child process) from the departure process (parent process), and assign its own identifier. In fact, each process is identified by a number called a process ID (PID). To obtain these numbers you can use the function:

GETPID()

So we extract the current PID. To extract the PID of the parent process using the following function:

GETPPID()

Returning to the FORK function, it returns -1 on error, 0 on success. After creating the child process, both processes continue program execution with the statement immediately following. These processes are independent, however. It 's good to remember that the child process does not share the same memory space as the parent process,
#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int esito;

 esito=fork(); //duplication of the process
 if (esito==-1)

 printf("\n Error creation child process!!");

 else

 printf("\n Child process created successfully!!!");

 return EXIT_SUCCESS;

}

Now we see an example:

#include<stdio.h>

int main(int argc , char *argv[])

{

 int pid;

 pid = fork();

 if(pid == 0)

 {

 /*code for child process*/

 printf("\n\t I’m the child\n");

 }

 if(pid != 0)

 {

 /*Another process*/

 printf("\n\t I’m process number:: %d \n", pid);

 exit(0);

 }

}/* main */

A signal is a software interrupt that indicates the occurrence of an asynchronous event, such as the pressure of a key from the keyboard. When a process receives a signal may perform three types of operations:
1.IGNORE
2. PERFORM THE ACTION OF DEFAULT

3. PERFORM SPECIAL ACTION
To specify the action to be performed using the function:

SIGNAL()

One of the parameters of this function is exactly the definition of the behavior of the process when it receives a signal.

In particular:
· SIG_IGN -> to ignore the signal

· To definy HANDLER

· SIG_DFL-> default handle.

The child process inherits all the signals available to the parent process. To suspend a process, just use the sleep function, passing it as parameter the number of seconds that the process goes to the sleep state. For example:

sleep(20)

the process is suspended for 20 seconds. To destroy a process using the KILL primitive, passing it the PID of the process that you intend to kill.

Let us see an illustrative example:
#include <signal.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int signal_flag = 1;

void signal_handler()

{

 signal_flag =0;

 printf("Signal managed! \n");

 return;

}

int main(void)

{

 int i;

 if (fork() == 0)

 { //child process
 while(1)

 {

 sleep(2);

 kill(getppid(), SIGUSR1);

 return EXIT_SUCCESS;

 }

 }

 else

 { //father process
 while (signal_flag)

 {

 i=0;

 signal(SIGUSR1, signal_handler);

 printf("Wait a singla\n");

 for (i; i<30000000; i++); /* delay */

 }

 }

 return EXIT_SUCCESS;

}

For more details refer to the guides.

C

B

A

Record3

Record2

Record1

device

Application program

stream

pointer

data

pointer

data

POINTER

DATA 1

POINTER

DATA 1

PAGE
30

